A Characterization of Entire Functions $\sum_{k=0}^{\infty} a_k z^k$ with all $a_k \ge 0$

A. R. REDDY

Department of Mathematics, Michigan State University, East Lansing, Michigan 48824

AND

O. Shisha

Department of Mathematics, University of Rhode Island, Kingston, Rhode Island 02881

THEOREM. Let a function f with domain $[0, \infty)$ be positive and continuous there. A necessary and sufficient condition for the existence of a sequence $(p_n(x))_{n=0}^{\infty}$ of polynomials whose coefficients are ≥ 0 , all $p_n(0) > 0$, satisfying

$$\sup_{0 \le x < \infty} \left| \frac{1}{f(x)} - \frac{1}{p_n(x)} \right| \to 0 \quad as \quad n \to \infty$$

is that f be the restriction of an entire function $\sum_{k=0}^{\infty} a_k z^k$, with all $a_k \ge 0$.

Proof. Sufficiency. For n=0,1,2,..., set $p_n(z)\equiv\sum_{k=0}^n a_kz^k$, so that $p_n(0)=a_0=f(0)>0$. Let $\epsilon>0$. We may assume some $a_k(k\geqslant 1)$ is >0. Let $r\geqslant 0$ be such that $f(r)>\epsilon^{-1}$. Then for all $n\geqslant \infty$ some $n_0\geqslant 0$, we have $p_n(r)>\epsilon^{-1}$. Hence if $n\geqslant n_0$ and x>r, we have $|[f(x)]^{-1}-[p_n(x)]^{-1}|<1/p_n(x)\leqslant 1/p_n(r)<\epsilon$. Let $n_1\geqslant n_0$ be such that if $0\leqslant x\leqslant r$ and $n\geqslant n_1$, we have $f(x)-p_n(x)<\epsilon^{-2}(0)$. If $n\geqslant n_1$ and $0\leqslant x\leqslant r$, then

$$|[f(x)]^{-1} - [p_n(x)]^{-1}|$$

$$= [f(x) - p_n(x)]/[f(x)p_n(x)] \le [f(x) - p_n(x)]/f^2(0) < \epsilon.$$

Hence $\sup_{0\leqslant x<\infty}|[f(x)]^{-1}-[p_n(x)]^{-1}|<\epsilon \text{ if } n\geqslant n_1$.

Necessity. Let $0 < r < \infty$. Let $n_2 \ge 0$ be such that $\sup_{0 \le x < \infty} |[f(x)]^{-1} - [p_n(x)]^{-1}| < [2 \max_{0 \le t \le r} f(t)]^{-1}$ whenever $n \ge n_2$. For such an n, if $0 \le x \le r$, then $[p_n(x)]^{-1} > [f(x)]^{-1} - [2 \max_{0 \le t \le r} f(t)]^{-1} \ge [2f(x)]^{-1}$, and hence $|f(x) - p_n(x)| = |f(x)p_n(x)| |[f(x)]^{-1} - [p_n(x)]^{-1}| \le 2f^2(x)| |[f(x)]^{-1} - [p_n(x)]^{-1}|$. Therefore if $n \ge n_2$, then $\max_{0 \le x \le r} |f(x) - p_n(x)| \le 2 \max_{0 \le x \le r} f^2(x) \cdot \sup_{0 \le x < \infty} |[f(x)]^{-1} - [p_n(x)]^{-1}| \to 0$ as $n \to \infty$. Thus $p_n(x)$ converges uniformly to f in [0, r]. As the coefficients of each $p_n(x)$ are ≥ 0 , there are a_0 , a_1 , a_2 ,..., all ≥ 0 , such that $f(x) = \sum_{k=0}^{\infty} a_k x^k$ throughout (0, r) ([3, p. 154]; for a very elementary proof see [2]). Since r > 0 is arbitrary, the result follows.

REFERENCES

- 1. A. R. Reddy and O. Shisha, A class of rational approximations on the positive real axis—A survey, *J. Approximation Theory* 12 (1974), 425-434.
- O. SHISHA, On sequences of power series with restricted coefficients, Amer. Math. Monthly 72 (1965), 533-537.
- 3. D. V. WIDDER, "The Laplace Transform," Princeton University Press, 1946.